Research Library
Discover insights from thousands of peer-reviewed papers on microbial electrochemical systems
Discover insights from thousands of peer-reviewed papers on microbial electrochemical systems
Jun-Gyu Park, Beom Lee, Ui-Jung Lee et al.
Environmental Engineering Research • 0
<jats:p>The microbial communities and operational performances of a conventional anaerobic digester (AD) and an AD combined with microbial electrolysis cells (ADMEC) were investigated. Primary sludge and waste-activated sludge were used as substrates, and next-generation sequencing (NGS) techniques were used to analyze the microbial characteristics. The results show that ADMEC can achieve a faster stabilization rate, higher organic decomposition, and methane production performance than AD. After both the ADMEC and AD reached a steady state, microbial results revealed that Methanobacterium beijingense and Methanosaeta concilii were the dominant methane-generating archaeal species in AD. In ADMEC, the relative abundance of methylotrophic methanogens (Thermoplasmata class), which has higher methane productivity than other methanogens, is significantly improved. For bacterial communities, an improved relative abundance of the Cloacamonas phylum, which is involved in amino acid fermentation, and in the Erysipelotrichi class, which grows well in environments with high organic concentrations, was observed in ADMEC. In summary, ADMEC is more efficient than AD because organic degradation and methanol production accelerated by bioelectrochemical reactions occur in ADMEC, leading to a favorable environment for the growth of methylotrophic methanogens in bulk solution.</jats:p>
Byeongcheol Kim, Euntae Yang, Bongkyu Kim et al.
Nanomaterials • 0
<jats:p>Microbial electrolysis cells (MECs) have attracted significant interest as sustainable green hydrogen production devices because they utilize the environmentally friendly biocatalytic oxidation of organic wastes and electrochemical proton reduction with the support of relatively lower external power compared to that used by water electrolysis. However, the commercialization of MEC technology has stagnated owing to several critical technological challenges. Recently, many attempts have been made to utilize nanomaterials in MECs owing to the unique physicochemical properties of nanomaterials originating from their extremely small size (at least <100 nm in one dimension). The extraordinary properties of nanomaterials have provided great clues to overcome the technological hurdles in MECs. Nanomaterials are believed to play a crucial role in the commercialization of MECs. Thus, understanding the technological challenges of MECs, the characteristics of nanomaterials, and the employment of nanomaterials in MECs could be helpful in realizing commercial MEC technologies. Herein, the critical challenges that need to be addressed for MECs are highlighted, and then previous studies that used nanomaterials to overcome the technological difficulties of MECs are reviewed.</jats:p>
Angela Marchetti, Miriam Cerrillo Moreno, Roberto Lauri et al.
Processes • 0
<jats:p>Microbial electrolysis cells (MECs) represent a pioneering technology for sustainable hydrogen production by leveraging bioelectrochemical processes. This study investigates the performance of a single-chamber cathodic MEC, where a cation exchange membrane separates the electrically active bioanode from the cathode. The system was constantly fed with a synthetic carbonaceous solution, employing a working potential of +0.3 V vs. SHE and an organic loading rate of 2 gCOD/Ld with a hydraulic retention time of 0.3 d. Notably, no methanogenic activity was detected, likely due to the establishment of an alkaline pH in the cathodic chamber. Under these conditions, the system exhibited good performance, achieving a current density of approximately 115 A/m3 and a hydrogen production rate of 1.28 m3/m3d. The corresponding energy consumption for hydrogen production resulted in 6.32 kWh/Nm3 H2, resulting in a slightly higher energetic cost compared to conventional electrolysis; moreover, an average energy efficiency of 85% was reached during the steady-state condition. These results demonstrate the potential of MECs as an effective and sustainable approach for biohydrogen production by helping the development of greener energy solutions.</jats:p>
Domenico Frattini, Gopalu Karunakaran, Eun-Bum Cho et al.
Processes • 0
<jats:p>The use of microbial fuel cells (MFCs) is quickly spreading in the fields of bioenergy generation and wastewater treatment, as well as in the biosynthesis of valuable compounds for microbial electrolysis cells (MECs). MFCs and MECs have not been able to penetrate the market as economic feasibility is lost when their performances are boosted by nanomaterials. The nanoparticles used to realize or decorate the components (electrodes or the membrane) have expensive processing, purification, and raw resource costs. In recent decades, many studies have approached the problem of finding green synthesis routes and cheap sources for the most common nanoparticles employed in MFCs and MECs. These nanoparticles are essentially made of carbon, noble metals, and non-noble metals, together with a few other few doping elements. In this review, the most recent findings regarding the sustainable preparation of nanoparticles, in terms of syntheses and sources, are collected, commented, and proposed for applications in MFC and MEC devices. The use of naturally occurring, recycled, and alternative raw materials for nanoparticle synthesis is showcased in detail here. Several examples of how these naturally derived or sustainable nanoparticles have been employed in microbial devices are also examined. The results demonstrate that this approach is valuable and could represent a solid alternative to the expensive use of commercial nanoparticles.</jats:p>
Nhlanganiso Ivan Madondo, Sudesh Rathilal, Babatunde Femi Bakare
Catalysts • 0
<jats:p>A vast quantity of untreated wastewater is discharged into the environment, resulting in contamination of receiving waters. A microbial electrolysis cell (MEC) is a promising bioelectrochemical system (BES) for wastewater treatment and energy production. However, poor design and control of MEC variables may lead to inhibition in the system. This study explored the utilization of Response Surface Methodology (RSM) on the synergistic aspects of MEC and magnetite nanoparticles for wastewater treatment. Influences of temperature (25–35 °C), voltage supply (0.3–1.3 V) and magnetite nanoparticle dosage (0.1–1.0 g) on the biochemical methane potentials (BMPs) were investigated with the aim of optimizing biogas yield, chemical oxygen demand removal and current density. The analysis of variance (ANOVA) technique verified that the quadratic models obtained were substantial, with p-values below 0.05 and high regression coefficients (R2). The optimum biogas yield of 563.02 mL/g VSfed, chemical oxygen demand (COD) removal of 97.52%, and current density of 26.05 mA/m2 were obtained at 32.2 °C, 0.77 V and 0.53 g. The RSM revealed a good comparison between the predicted and actual responses. This study revealed the effective utilization of statistical modeling and optimization to improve the performance of the MEC to achieve a sustainable and eco-friendly situation.</jats:p>
Zhang Min, Tang Rui, Li Yu
Water Science & Technology • 2024
<jats:title>ABSTRACT</jats:title> <jats:p/> <jats:p>The anaerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) is challenging due to its toxic effect on the microbes. Microbial electrolysis cells (MECs), with their excellent characteristics of anodic and cathodic biofilms, can be a viable way to enhance the biodegradation of PAHs. This work assessed different cathode materials (carbon brush and nickel foam) combined with bioaugmentation on typical PAHs-naphthalene biodegradation and analyzed the inhibition amendment mechanism of microbial biofilms in MECs. Compared with the control, the degradation efficiency of naphthalene with the nickel foam cathode supplied with bioaugmentation dosage realized a maximum removal rate of 94.5 ± 3.2%. The highest daily recovered methane yield (227 ± 2 mL/gCOD) was also found in the nickel foam cathode supplied with bioaugmentation. Moreover, the microbial analysis demonstrated the significant switch of predominant PAH-degrading microorganisms from Pseudomonas in control to norank_f_Prolixibacteraceae in MECs. Furthermore, hydrogentrophic methanogenesis prevailed in MEC reactors, which is responsible for methane production. This study proved that MEC combined with bioaugmentation could effectively alleviate the inhibition of PAH, with the nickel foam cathode obtaining the fastest recovery rate in terms of methane yield.</jats:p>
Gao Lei, Yaoqiang Wang, Gang Xiao et al.
Catalysts • 0
<jats:p>Hydrogen energy has emerged as a pivotal clean energy solution due to its sustainability and zero-emission potential. Microbial electrolysis cells are a promising technology for renewable hydrogen production, typically relying on expensive and unstable Pt/C catalysts for the hydrogen evolution reaction (HER). To address these limitations, this study develops a cost-effective and durable alternative approach. A cobalt–molybdenum (Co-Mo) alloy catalyst (denoted as CoMo/SS) was synthesized via a one-step electrodeposition method on 1000-mesh 316L stainless steel at a current density of 30 mA·cm−2 for 80 min, using an electrolyte with a Co-to-Mo ratio of 1:1. The electrochemical properties and hydrogen evolution performance of this catalyst in a microbial electrolysis cell were evaluated. Key results demonstrate that the CoMo/SS catalyst achieves a good catalytic performance of hydrogen evolution. The CoMo/SS cathode catalyst only requires an overpotential of 91.70 mV (vs. RHE) to reach a current density of 10 mA·cm−2 in 1 mol·L−1 KOH, with favorable kinetics, evidenced by a reduced Tafel slope of 104.10 mV·dec−1, enhanced charge transfer with a charge transfer resistance of 4.56 Ω, and a double-layer capacitance of 34.73 mF·cm−2. Under an applied voltage of 0.90 V, the CoMo/SS cathode exhibited a hydrogen production rate of 1.12 m3·m−3·d−1, representing a 33.33% improvement over bare SS mesh. This performance highlights the catalyst’s potential as a viable Pt/C substitute for scalable MEC applications.</jats:p>
Ki Nam Kim, Sung Hyun Lee, Hwapyong Kim et al.
Energies • 0
<jats:p>A microbial electrolysis cell (MEC) consumes the chemical energy of organic material producing, in turn, hydrogen. This study presents a new hybrid MEC design with improved performance. An external TiO2 nanotube (TNT) array photoanode, fabricated by anodization of Ti foil, supplies photogenerated electrons to the MEC electrical circuit, significantly improving overall performance. The photogenerated electrons help to reduce electron depletion of the bioanode, and improve the proton reduction reaction at the cathode. Under simulated AM 1.5 illumination (100 mW cm−2) the 28 mL hybrid MEC exhibits a H2 evolution rate of 1434.268 ± 114.174 mmol m−3 h−1, a current density of 0.371 ± 0.000 mA cm−2 and power density of 1415.311 ± 23.937 mW m−2, that are respectively 30.76%, 34.4%, and 26.0% higher than a MEC under dark condition.</jats:p>
Maxime Blatter, Marc Sugnaux, Christos Comninellis et al.
ChemSusChem • 2016
<jats:title>Abstract</jats:title><jats:p>A predictive model for the microbial/electrochemical base formation from wastewater was established and compared to experimental conditions within a microbial electrolysis cell. A Na<jats:sub>2</jats:sub>SO<jats:sub>4</jats:sub>/K<jats:sub>2</jats:sub>SO<jats:sub>4</jats:sub> anolyte showed that model prediction matched experimental results. Using <jats:italic>Shewanella oneidensis</jats:italic> MR‐1, a strong base (pH≈13) was generated using applied voltages between 0.3 and 1.1 V. Due to the use of bicarbonate, the pH value in the anolyte remained unchanged, which is required to maintain microbial activity.</jats:p>
Isaac Vázquez, Sven Kerzenmacher, Óscar Santiago
Frontiers in Energy Research • 0
<jats:p>In the last years, microbial electrochemical technologies have received increasing attention due to their promising environmental potential. However, the identification of the most suitable materials for further development of these technologies tends to be challenging, especially for operation under realistic wastewater conditions. The objective of the present work is to carry out a systematic comparison of six anode materials (stainless-steel wool, carbon paper, graphite felt, graphite plate, graphite foil, and stainless-steel mesh) for microbial electrolysis cells operated for the treatment of brewery wastewater and determine the best material of these in sight of its electrochemical performance. For this purpose, the medium was semisynthetic brewery wastewater of low buffer capacity and low conductivity. The results suggest, that the degree of fermentation and characteristics of the studied media have only a minor impact on the limiting current density of the bioanodes. Here, the limiting current density of microbial anodes with stainless-steel wool (0.45 ± 0.07 mA·cm<jats:sup>−2</jats:sup>), a not so extensively studied promising material, outperformed commonly used materials such as graphite felt, without evidence of corrosion.</jats:p>
Mayank Dhadwal, Yang Liu, Bipro Ranjan Dhar
Processes • 0
<jats:p>Reclamation and reuse of wastewater are increasingly viewed as a pragmatic tool for water conservation. Greywater, which includes water from baths, washing machines, dishwashers, and kitchen sinks, is a dilute wastewater stream, making it an attractive stream for extraction of non-potable water. However, most previous studies primarily focused on passively aerated biological and physicochemical treatment processes for greywater treatment. Here, we investigated an integrated process of a microbial electrochemical cell (MEC) followed by granular activated carbon (GAC) biofilter for greywater treatment. The integrated system could achieve 99.3% removal of total chemical oxygen demand (TCOD) and 98.7% removal of the anionic surfactants (linear alkylbenzene sulphonates) from synthetic greywater at a total hydraulic residence time (HRT) of 25 h (1 day for MEC and 1 h for GAC biofilter). For one-day HRT, the maximum peak volumetric current density from MEC was 0.65 A/m3, which was comparable to that achieved at four-day HRT (0.66 A/m3). The adsorption by GAC was identified as a key mechanism for the removal of organics and surfactants. In addition, recirculation of liquid within the GAC biofilter was identified as a critical factor in achieving high-rate treatment. Although results indicated that GAC biofilter could be a standalone process for greywater, MEC can provide an opportunity for potential energy recovery from greywater. However, further studies should focus on developing high-rate MECs with higher energy recovery potential for practical operation.</jats:p>
Hasna Aprilia, Jelita Ninda Qorina, R. Arbianti et al.
AIP Conference Proceedings • 2021
One way to treat oil waste is a seawater desalination system that uses exoelectorgenic bacteria as an agent for the degradation of organic compounds contained in oil waste. Microbial Desalination Cell (MDC) is a development of Microbial Fuel Cell (MFC), a method that can eliminate salt content in seawater using electricity generated by bacteria from wastewater. Stacked Microbial Desalination Cell (SMDC) is an MDC development where SMDC uses many pairs of ion Exchange Membranes (IEMs) where IEMs are placed between the Anion Exchange Membrane (AEM) and the Cation Exchange Membrane (CEM). This is intended to increase the efficiency of electron transfer. SMDC can also return more energy than other types of MDC so that the cost is more effectively. In this research, using a 2-SMDC reactor configuration with graphite rods as anode, CFC coated with activated carbon as a cathode, potassium permanganate as catholyte, and adding ion exchange resin to salt chamber. Independent variables used in this research were activated carbon mass variations of 0, 2, and 4 g. Parameters that will be obtained are COD, electrical productivity, and pH. The results obtained in this study indicate that the optimum mass variation of activated carbon is 4 g by adding Ion Exchange resin (ratio Resin Na and Cl 1 : 1) with a COD reduction of 57.808% and produces electrical productivity of 0.000561 W/m3 , and the change in pH by 0.24.
Ganesan V. Murugesu, Saiful Nizam Khalid, H. Shareef
IEEE Access • 2022
Microbial fuel cells (MFCs) are a promising technology that use microorganisms to generate electrical energy from chemical energy. However, ultralow-power production and high-cost materials have become significant drawbacks in MFC development. Therefore, various methods have been proposed for increasing the output power of MFC. Among them, stacking multiple cells in a series has been suggested as the most promising method for generating high power in MFC. However, voltage reversal (VR) has become an issue that limits the electrical power generation in stacked MFC. Thus, this study investigates and discusses the actual cause of the voltage reversal phenomenon in a series-stacked MFC from the perspective of electron and proton transfer mechanisms. This paper also discusses the electronic control methods used to eliminate VR and challenges in MFC development. Furthermore, this review also briefly explains the evolution of MFC development stages and the factors influencing MFC performance. It is found that solving the VR issue in a series of stacked MFC is a significant factor in boosting MFC technology in the commercial world. In addition, reducing material and operational costs will promote future implementation of MFCs.
Ann Maria George, Aravind M. Nair, Harichand M Ramesh et al.
2024 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES) • 2024
Microorganisms are used in Microbial Fuel Cells, a promising technology that converts chemical energy into electrical energy. High-cost materials and ultralow-power production, however, have emerged as major obstacles to MFC growth. As a result, numerous strategies have been put forth to raise the MFC's output power. Among them, the most promising technique for producing high power in MFC has been proposed to be the stacking of numerous cells in succession. Voltage reversal (VR), however, is now a problem that restricts the amount of electricity that can be produced in stacked MFC. Thus, from the perspective of electron and proton transport mechanisms in a series-stacked MFC, this work explores and explains the true reason of the voltage reversal phenomena. The electronic control techniques utilized to remove obstacles in MFC growth are also covered in this study.
Tangming Li, Peiwen Yang, Jun Yan et al.
Molecules • 2024
Hexavalent chromium (Cr (VI)) and para-chlorophenol (4-CP) are prevalent industrial wastewater contaminants that are recalcitrant to natural degradation and prone to migration in aquatic systems, thereby harming biological health and destabilizing ecosystems. Consequently, their removal is imperative. Compared to conventional chemical treatment methods, CW-MFC technology offers broader application potential. Leersia hexandra Swartz can enhance Cr (VI) and 4-CP absorption, thereby improving wastewater purification and electricity generation in CW-MFC systems. In this study, three CW-MFC reactors were designed with L. hexandra Swartz in distinct configurations, namely, stacked, multistage, and modular, to optimize the removal of Cr (VI) and 4-CP. By evaluating wastewater purification, electrochemical performance, and plant growth, the optimal influent hydraulic retention time (HRT) was determined. The results indicated that the modular configuration at an HRT of 5 days achieved superior removal rates and power generation. The modular configuration also supported the best growth of L. hexandra, with optimal photosynthetic parameters, and physiological and biochemical responses. These results underscore the potential of modular CW-MFC technology for effective detoxification of complex wastewater mixtures while concurrently generating electricity. Further research could significantly advance wastewater treatment and sustainable energy production, addressing water pollution, restoring aquatic ecosystems, and mitigating the hazards posed by Cr (VI) and 4-CP to water and human health.
H. Salman
JOURNAL OF XI'AN UNIVERSITY OF ARCHITECTURE & TECHNOLOGY • 2020
Microbial desalination cells (MDCs) are considered as a new clean sustainable technology for simultaneous treatment of wastewater, desalination of saline water, and power generation. In this study, the performance of a stacked microbial desalination cell (SMDC) contained three desalination chambers was investigated. This SMDC which designed with three desalination chambers was fed with real domestic wastewater to the anode and actual wetland saline water to the desalination chambers. The results revealed that maximum COD removal efficiency, desalination efficiency, power generation, and coulombic efficiency were 100%, 96.8%, 877mW/m, 6.92%, respectively. These promising results indicated the validity of using SMDC for simultaneous desalination of actual wetland saline water, treatment of sewage treatment, and power generation. KeywordsStacked microbial desalination cell, , Power generation, Saline water, Biotreatment.
Arnas Klevinskas, Kristina Kantminienė, Nerita Žmuidzinavičienė et al.
Processes • 0
<jats:p>The deteriorating environmental quality requires a rapid in situ real-time monitoring of toxic compounds in environment including water and wastewater. One of the most toxic nitrogen-containing ions is nitrite ion, therefore, it is particularly important to ensure that nitrite ions are completely absent in surface and ground waters as well as in wastewater or, at least, their concentration does not exceed permissible levels. However, no selective ion electrode, which would enable continuous measurement of nitrite ion concentration in wastewater by bioelectrochemical sensor, is available. Microbial fuel cell (MFC)-based biosensor offers a sustainable low-cost alternative to the monitoring by periodic sampling for laboratory testing. It has been determined, that at low (0.01–0.1 mg·L−1) and moderate (1.0–10 mg·L−1) concentration of nitrite ions in anolyte-model wastewater, the voltage drop in MFC linearly depends on the logarithm of nitrite ion concentration of proving the potential of the application of MFC-based biosensor for the quantitative monitoring of nitrite ion concentration in wastewater and other surface water. Higher concentrations (100–1000 mg·L−1) of nitrite ions in anolyte-model wastewater could not be accurately quantified due to a significant drop in MFC voltage. In this case MFC can potentially serve as a bioelectrochemical early warning device for extremely high nitrite pollution.</jats:p>
Sudarsu Ramanaiah, Cristina Cordas, Sara Matias et al.
Catalysts • 0
<jats:p>The electrochemical features of microbial fuel cells’ biocathodes, running on wastewater, were evaluated by cyclic voltammetry. Ex situ and in situ electrochemical assays were performed and the redox processes associated with the presence of microorganisms and/or biofilms were attained. Different controls using sterile media (abiotic cathode microbial fuel cell) and membranes covering the electrodes were performed to evaluate the source of the electrochemistry response (surface biofilms vs. biotic electrolyte). The bacteria presence, in particular when biofilms are allowed to develop, was related with the enhanced active redox processes associated with an improved catalytic activity, namely for oxygen reduction, when compared with the results attained for an abiotic microbial fuel cell cathode. The microbial main composition was also attained and is in agreement with other reported studies. The current study aims contributing to the establishment of the advantages of using biocathodes rather than abiotic, whose conditions are frequently harder to control and to contribute to a better understanding of the bioelectrochemical processes occurring on the biotic chambers and the electrode surfaces.</jats:p>
Jiseon You, Hangbing Fan, Jonathan Winfield et al.
Molecules • 0
<jats:p>Improving the efficiency of microbial fuel cell (MFC) technology by enhancing the system performance and reducing the production cost is essential for commercialisation. In this study, building an additive manufacturing (AM)-built MFC comprising all 3D printed components such as anode, cathode and chassis was attempted for the first time. 3D printed base structures were made of low-cost, biodegradable polylactic acid (PLA) filaments. For both anode and cathode, two surface modification methods using either graphite or nickel powder were tested. The best performing anode material, carbon-coated non-conductive PLA filament, was comparable to the control modified carbon veil with a peak power of 376.7 µW (7.5 W m−3) in week 3. However, PLA-based AM cathodes underperformed regardless of the coating method, which limited the overall performance. The membrane-less design produced more stable and higher power output levels (520−570 µW, 7.4−8.1 W m−3) compared to the ceramic membrane control MFCs. As the final design, four AM-made membrane-less MFCs connected in series successfully powered a digital weather station, which shows the current status of low-cost 3D printed MFC development.</jats:p>
Guozhen Wang, Yating Guo, Jiaying Cai et al.
RSC Advances • 0
<p>The objective of this study is to assess bioelectricity generation, pollutant removal and the bacterial communities on anodes in constructed wetlands coupled with microbial fuel cells, through feeding the systems with three different types of synthetic wastewater.</p>
Aritro Banerjee, Rajnish Kaur Calay, Fasil Ejigu Eregno
Energies • 0
<jats:p>Microbial fuel cells (MFC) are an emerging technology for wastewater treatment that utilizes the metabolism of microorganisms to generate electricity from the organic matter present in water directly. The principle of MFC is the same as hydrogen fuel cell and has three main components (i.e., anode, cathode, and proton exchange membrane). The membrane separates the anode and cathode chambers and keeps the anaerobic and aerobic conditions in the two chambers, respectively. This review paper describes the state-of-the-art membrane materials particularly suited for MFC and discusses the recent development to obtain robust, sustainable, and cost-effective membranes. Nafion 117, Flemion, and Hyflon are the typical commercially available membranes used in MFC. Use of non-fluorinated polymeric membrane materials such as sulfonated silicon dioxide (S-SiO2) in sulfonated polystyrene ethylene butylene polystyrene (SSEBS), sulfonated polyether ether ketone (SPEEK) and graphene oxide sulfonated polyether ether ketone (GO/SPEEK) membranes showed promising output and proved to be an alternative material to Nafion 117. There are many challenges to selecting a suitable membrane for a scaled-up MFC system so that the technology become technically and economically viable.</jats:p>
Paulina Rusanowska, Marcin Dębowski, Marcin Zieliński
Energies • 0
<jats:p>Microalgae microbial fuel cells (pMFCs) are distinguished by their ability to combine waste utilization with the simultaneous recovery of energy and valuable materials. The generation of high current density is linked to the efficient electron transfer to the anode via the anodic biofilm and the high photosynthetic activity of the microalgae cultivated in the cathode chamber. This review explores the impact of wastewater type on energy production and wastewater treatment. Additionally, it discusses the challenges related to microalgae growth in the cathode chamber, the necessity of aeration, and the sequestration of carbon dioxide from the anode chamber. The efficiency of microalgae in utilizing nutrients from various types of wastewater is also presented. In conclusion, the comparison between wastewater treatment and energy balance in pMFCs and conventional wastewater treatment plants is provided. On average, MFCs consume only 0.024 kW or 0.076 kWh/kg COD, which is approximately ten times less than the energy used by activated sludge bioprocesses. This demonstrates that MFCs offer highly efficient energy consumption compared to traditional wastewater treatment systems while simultaneously recovering energy through exoelectrogenic, bioelectrochemical processes.</jats:p>
Kasparas Kižys, Domas Pirštelis, Ingrida Bružaitė et al.
Biosensors • 0
<jats:p>Microbial fuel cells (MFCs) are one of the contributors to the novel sustainable energy generation from organic waste. However, the application of MFCs is limited due to the slow charge transfer between cells and electrodes. This problem can be solved by modifying cells with conductive polymers, such as polypyrrole (PPy). We investigated the viability and electroactivity of modified cells at five different pyrrole concentrations, namely 8, 25, 50, 100, and 200 mM. The 100 mM concentration of PPy solution had the highest impact on yeast cells’ proliferation and growth, with the CFU/mL of PPy-treated yeast cells being 0.6 × 107 ± 5 × 10−2. The power density of the constructed MFC was evaluated by using an external load. The MFCs were analyzed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Although CV results with different pyrrole concentrations were similar, DPV indicated that yeast modification with 50 mM pyrrole resulted in the most significant current density, which may be attributed to an increase in charge transfer due to the conductive properties of polypyrrole. The power density achieved with modified yeast in wastewater, 12 mW/m2, reached levels similar to those in laboratory solutions, 45 mW/m2.</jats:p>
Murali Krishna Pasupuleti
AI in Renewable Energy Management: Tools for Optimizing Sustainable Power Systems • 0
<jats:p>Abstract: This chapter explores the transformative impact of AI-enhanced renewable energy systems, focusing on how intelligent systems are revolutionizing the management of sustainable power. It delves into the core components of AI-driven energy systems, including advanced algorithms, smart grids, and optimized energy storage solutions. The chapter examines the application of AI in solar, wind, and hydropower systems, highlighting its role in predictive maintenance, real-time monitoring, and performance optimization. Additionally, it discusses AI's critical function in energy demand forecasting, load management, and the emerging field of energy trading. The chapter also addresses the technical challenges and economic opportunities associated with integrating AI into renewable energy systems, emphasizing the importance of innovation, cross-sector collaboration, and strategic planning for achieving global sustainability goals. Future trends in AI-enhanced renewable energy, such as advancements in AI algorithms, the integration of emerging technologies, and the development of autonomous energy management systems, are explored to provide a comprehensive understanding of the path towards a sustainable energy future. Keywords: AI-Enhanced Renewable Energy, Intelligent Systems, Sustainable Power Management, Predictive Maintenance, Energy Storage Optimization, Smart Grids, Energy Demand Forecasting, Load Management, Energy Trading, Renewable Energy Innovation, Autonomous Energy Systems, Quantum Computing in Energy, Internet of Things (IoT), Blockchain in Energy, Sustainable Energy Future.</jats:p>
Murali Krishna Pasupuleti
Empowered Future: AI-Driven Green Energy Systems for Sustainable Power Management • 0
<jats:p>Abstract: This chapter explores how artificial intelligence (AI) is revolutionizing sustainable energy management, emphasizing the integration of machine learning, predictive analytics, smart grids, and IoT to optimize renewable energy sources. It discusses the environmental and economic benefits of AI-powered systems, including reduced carbon emissions, minimized energy waste, and improved grid stability. The chapter also addresses the challenges of data privacy, implementation costs, and ethical considerations while highlighting future trends and the importance of global collaboration to achieve a sustainable, energy-efficient future. Keywords: AI, sustainable energy, renewable energy, smart grids, machine learning, predictive analytics, energy management, carbon emissions, energy efficiency, IoT, environmental impact, data privacy, ethical considerations, global collaboration, energy optimization</jats:p>
Yi Wang, Lihua Zhou, Xiaoshan Luo et al.
ChemSusChem • 2018
Temperature is an important parameter for the performance of bioelectrochemical systems (BESs). Energy-intensive bulk water heating has been usually employed to maintain a desired temperature for the BESs. This study concerns a proof-of-concept of a light-to-heat photothermal electrode for solar heating of a local electroactive biofilm in a BES for efficient microbial energy harvesting at low temperatures as a replacement for bulk water heating approaches. The photothermal electrode was prepared by coating Ti3 C2 Tx MXene sunlight absorber onto carbon felt. The as-prepared photothermal electrode could efficiently raise the local temperature of the bioelectrode to approximately 30 °C from low bulk water temperatures (i.e., 10, 15, and 20 °C) under simulated sunlight illumination. As a result, highly efficient microbial energy could be harvested from the low-temperature BES equipped with a photothermal electrode without bulk water heating. This study represents a new avenue for the design and fabrication of electrodes for temperature-sensitive electrochemical and biological systems.
V. Ancona, A. Caracciolo, D. Borello et al.
International Journal of Environmental Impacts: Management, Mitigation and Recovery • 2020
Pollution of soil and water environments is mainly due to different anthropogenic factors, and the presence of organic contaminants, in particular persistent, bioaccumulative and toxic ones, arouses concern for their possible effects on environment and human health. One nature-based technology that can be used in biodegradation of contaminated soil and water is microbial fuel cells (MFCs). They are also capable of producing energy and of being used as environmental sensors. In this context, this article aims at presenting the capacity of MFCs to reduce environmental pollution by exploiting the process of bioelectrochemical utilization of organic matter via microbial metabolism, to generate usable byproducts, fuels and bioelectricity. The main characteristic of an MFC, when used for energy harvesting, is the absence of emissions of pollutant gases such as CO, CO 2 , SOx or NOx. This characteristic, together with the intrinsic capacity of bioreactors to decontaminate soils and water, is stimulating the research into engineering solutions exploiting the MFC potential. Among the different types of MFCs, as bioelectrochemical systems (BESs), the terrestrial microbial fuel cells and the wastewater microbial fuel cells convert energy using a biocatalyst (microorganism) and a biofuel (organic substrate) in basic environments such as soil and water. Consequently, MFCs can be used as energy sources for powering sensors with low-power and low-voltage characteristics or complete single nodes of a distributed wireless sensor network, if coupled with smart although more complex electronic circuit. Moreover, MFCs can be environmental sensors, suited to monitoring some environmental parameters influencing MFC functional behaviours such as pH and temperature. This article introduces the polluted environment scenarios where these technologies could be suitably applied together with the description of two main types of MFC structures and their functioning. Furthermore, some case studies in which MFCs are used in decontamination of polluted environments are described.
Yajing Guo, Jiao Wang, Shrameeta Shinde et al.
RSC Advances • 2020
The development of microbial fuel cell (MFC) makes it possible to generate clean electricity as well as remove pollutants from wastewater. Extensive studies on MFC have focused on structural design and performance optimization, and tremendous advances have been made in these fields. However, there is still a lack of systematic analysis on biocatalysts used in MFCs, especially when it comes to pollutant removal and simultaneous energy recovery. In this review, we aim to provide an update on MFC-based wastewater treatment and energy harvesting research, and analyze various biocatalysts used in MFCs and their underlying mechanisms in pollutant removal as well as energy recovery from wastewater. Lastly, we highlight key future research areas that will further our understanding in improving MFC performance for simultaneous wastewater treatment and sustainable energy harvesting.
Chuan-Yi Wu, Chi-Wei Liu, Jing-Siang Chen et al.
2022 IEEE International Solid- State Circuits Conference (ISSCC) • 2022
Soil monitoring provides comprehensive information on the ecosystem and soil functions, but it involves intensive field sampling and costly laboratory analysis. Advanced wireless sensor networks ease the sampling process and labor efforts [1]. However, the proliferation of wireless environmental monitoring applications is problematic in maintaining the power required for proper operation. Also, battery poses issues for minimizing sensor nodes and limiting environmental pollution. Ambient energy harvesting offers an alternative power supply to operate the sensor interface and wireless transceiver [2]–[5]. However, batteryless wireless sensor nodes typically suffer from low RF-powering sensitivity (~ -20dBm) [2], [5] and a short communication distance [4], making them unsuitable for wide-range environmental monitoring.
A. Shukla, Shirsendu Mitra, Shikha Dhakar et al.
ACS Applied Bio Materials • 2022
With the continuous growth in world population and economy, the global energy demand is increasing rapidly. Given that non-renewable energy sources will eventually deplete, there is increasing need for clean, alternative renewable energy sources, which will be inexpensive and involve minimum risk of environmental pollution. In this paper, harnessing the activity of cupric reductase NDH-2 enzyme present in Escherichia coli bacterial cells, we demonstrate a simple and efficient energy harvesting strategy within an electrochemical chamber without the requirement of any external fuels or force fields. The transduction of energy has been demonstrated with various strains of E. coli, indicating that this strategy could, in principle, be applicable for other microbial catalytic systems. We offer a simple mechanism of the energy transduction process considering the bacterial enzyme-mediated redox reaction occurring over the working electrode of the electrochemical cell. Also, the amount of energy generated has been found to be depending on the motility of bacteria within the experimental chamber, suggesting possible opportunities for developing microbial motility-controlled small scale power generators. Finally, we show that the Faradaic electrochemical energy harvested is large enough to power a commercial light emitting diode connected to an amplifier circuit. We expect the present study to generate sufficient interest within soft condensed matter and biophysics communities, and offer useful platforms for controlled energy generation at the small scales.
John Greenman, Robin Thorn, Neil Willey et al.
Frontiers in Bioengineering and Biotechnology • 0
<jats:p>Microbial Fuel Cells (MFC) can be fuelled using biomass derived from dead plant material and can operate on plant produced chemicals such as sugars, carbohydrates, polysaccharides and cellulose, as well as being “fed” on a regular diet of primary biomass from plants or algae. An even closer relationship can exist if algae (e.g., prokaryotic microalgae or eukaryotic and unicellular algae) can colonise the open to air cathode chambers of MFCs driving photosynthesis, producing a high redox gradient due to the oxygenic phase of collective algal cells. The hybrid system is symbiotic; the conditions within the cathodic chamber favour the growth of microalgae whilst the increased redox and production of oxygen by the algae, favour a more powerful cathode giving a higher maximum voltage and power to the photo-microbial fuel cell, which can ultimately be harvested for a range of end-user applications. MFCs can utilise a wide range of plant derived materials including detritus, plant composts, rhizodeposits, root exudates, dead or dying macro- or microalgae, via Soil-based Microbial Fuel Cells, Sediment Microbial Fuel Cells, Plant-based microbial fuel cells, floating artificial islands and constructed artificial wetlands. This review provides a perspective on this aspect of the technology as yet another attribute of the benevolent Bioelectrochemical Systems.</jats:p>
Narendran Sekar, Rachit Jain, Yajun Yan et al.
Biotechnology and Bioengineering • 2016
<jats:title>ABSTRACT</jats:title><jats:sec><jats:label /><jats:p>Photosynthetic energy conversion using natural systems is increasingly being investigated in the recent years. Photosynthetic microorganisms, such as cyanobacteria, exhibit light‐dependent electrogenic characteristics in photo‐bioelectrochemical cells (PBEC) that generate substantial photocurrents, yet the current densities are lower than their photovoltaic counterparts. Recently, we demonstrated that a cyanobacterium named <jats:italic>Nostoc</jats:italic> sp. employed in PBEC could generate up to 35 mW m<jats:sup>−2</jats:sup> even in a non‐engineered PBEC. With the insights obtained from our previous research, a novel and successful attempt has been made in the current study to genetically engineer the cyanobacteria to further enhance its extracellular electron transfer. The cyanobacterium <jats:italic>Synechococcus elongatus</jats:italic> PCC 7942 was genetically engineered to express a non‐native redox protein called outer membrane cytochrome S (OmcS). OmcS is predominantly responsible for metal reducing abilities of exoelectrogens such as <jats:italic>Geobacter</jats:italic> sp. The engineered <jats:italic>S. elongatus</jats:italic> exhibited higher extracellular electron transfer ability resulting in approximately ninefold higher photocurrent generation on the anode of a PBEC than the corresponding wild‐type cyanobacterium. This work highlights the scope for enhancing photocurrent generation in cyanobacteria, thereby benefiting faster advancement of the photosynthetic microbial fuel cell technology. Biotechnol. Bioeng. 2016;113: 675–679. © 2015 Wiley Periodicals, Inc.</jats:p></jats:sec>
Angelika E.W. Horst, Klaus‐Michael Mangold, Dirk Holtmann
Biotechnology and Bioengineering • 2016
<jats:title>ABSTRACT</jats:title><jats:sec><jats:label /><jats:p>Combining the advantages of biological components (e.g., reaction specificity, self‐replication) and electrochemical techniques in bioelectrochemical systems offers the opportunity to develop novel efficient and sustainable processes for the production of a number of valuable products. The choice of electrode material has a great impact on the performance of bioelectrochemical systems. In addition to the redox process at the electrodes, interactions of biocatalysts with electrodes (e.g., enzyme denaturation or biofouling) need to be considered. In recent years, gas diffusion electrodes (GDEs) have proved to be very attractive electrodes for bioelectrochemical purposes. GDEs are porous electrodes, that posses a large three‐phase boundary surface. At this interface, a solid catalyst supports the electrochemical reaction between gaseous and liquid phase. This mini‐review discusses the application of GDEs in microbial and enzymatic fuel cells, for microbial electrolysis, in biosensors and for electroenzymatic synthesis reactions. Biotechnol. Bioeng. 2016;113: 260–267. © 2015 Wiley Periodicals, Inc.</jats:p></jats:sec>
Emre Cevik, Muhammad Hassan, Mohammed Ashraf Gondal
Energy Technology • 2021
<jats:sec><jats:label/><jats:p>Herein, photocurrent generating a millimeter‐scale bioelectrochemical cell (mBEC) is fabricated using a thylakoid membrane (TM) on a screen‐printed electrode (SPE). The mBEC is used to generate a direct and mediated photocurrent without using a selective membrane. The mediated photocurrent generation is tested with iron oxide nanoparticles (NPs) coated on the SPE surface and the water soluble mediators potassium hexacyanoferrate (FCN) and p‐Benzoquinone (BQ). The SPE/TM system produces a 4.35 μA cm<jats:sup>−2</jats:sup> photocurrent without using a mediator obtained by direct electron transfer (DET). A significant enhancement reaches the current generation when an efficient amount of mediator is used in the system. The SPE/NP/BQ/TM system produces a 55 μA cm<jats:sup>−2</jats:sup> photocurrent with an incorporation among TM, NP, and BQ. The performance of the mBECs is tested by taking the measurements from series and parallel connected cells. An enhanced photocurrent generation of 178 μA cm<jats:sup>−2</jats:sup> is attained when the four cells are connected in series. Also, a higher light conversion rate is achieved by the parallel connected two cells. In addition, the maximum current density of mBEC obtained from the SPE/NP/BQ/TM cell at a pseudo‐steady state is 180 mA m<jats:sup>−2</jats:sup> at a power density of 40 mWm<jats:sup>−2</jats:sup>.</jats:p></jats:sec>
Tertsegha J.‐P. Ivase, Bemgba B. Nyakuma, Olagoke Oladokun et al.
Environmental Progress & Sustainable Energy • 2020
<jats:title>Abstract</jats:title><jats:p>Bioelectrochemical systems (BES) are commonly utilized to generate green electricity, chemicals, and materials through bioelectrocatalytic processes. Over the years, the growing interests in low carbon energy, wastes valorization and the sustainable bioremediation of environmental pollutants have generated interests in BES such as microbial fuel cells (MFC) and bioelectrochemical fuel cells (BFC). The MFCs are the most advanced BES that can ensure the microbial conversion of chemical energy into electrical energy. Therefore, this article seeks to review and present valuable literature on the fundamental operational principles, mechanisms and understanding of BES such as MFCs. It seeks to highlight the schematics of these systems along with the processes and mechanisms such as the oxidation of organic substrates ranging from acetate compounds to complex mixtures. Furthermore, the prospects, challenges, and future applications of BES technologies are presented. The findings indicate that BFCs and MFCs are hampered by low efficiencies, energy output, mass transfer, porosity, and proton conductivity of the electrode and membrane materials along with mechanical strength, scalability, biocompatibility, and chemical stability. However, BES could potentially impact on clean energy production, greenhouse gases mitigation, wastewater treatment, bioanalysis, biosensors, and environmental remediation in the future.</jats:p>
Alistair J. McCormick, Paolo Bombelli, Robert W. Bradley et al.
Energy & Environmental Science • 0
<p>Correction for ‘Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems’ by Alistair J. Mccormick <italic>et al., Energy Environ. Sci.</italic>, 2015, DOI: 10.1039/c4ee03875d.</p>
André Baudler, Igor Schmidt, Markus Langner et al.
Energy & Environmental Science • 0
<jats:p>Here we propose copper as a high performance and economically viable anode material for microbial bioelectrochemical systems.</jats:p>
S. Malik, Shristi Kishore, Archna Dhasmana et al.
Water • 2023
The treatment of wastewater is an expensive and energy-extensive practice that not only ensures the power generation requirements to sustain the current energy demands of an increasing human population but also aids in the subsequent removal of enormous quantities of wastewater that need to be treated within the environment. Thus, renewable energy source-based wastewater treatment is one of the recently developing techniques to overcome power generation and environmental contamination issues. In wastewater treatment, microbial fuel cell (MFC) technology has demonstrated a promising potential to evolve as a sustainable approach, with the simultaneous recovery of energy and nutrients to produce bioelectricity that harnesses the ability of electrogenic microbes to oxidize organic contaminants present in wastewater. Since traditional wastewater treatment has various limitations, sustainable implementations of MFCs might be a feasible option in wastewater treatment, green electricity production, biohydrogen synthesis, carbon sequestration, and environmentally sustainable sewage treatment. In MFCs, the electrochemical treatment mechanism is based on anodic oxidation and cathodic reduction reactions, which have been considerably improved by the last few decades of study. However, electricity production by MFCs remains a substantial problem for practical implementations owing to the difficulty in balancing yield with overall system upscaling. This review discusses the developments in MFC technologies, including improvements to their structural architecture, integration with different novel biocatalysts and biocathode, anode, and cathode materials, various microbial community interactions and substrates to be used, and the removal of contaminants. Furthermore, it focuses on providing critical insights and analyzing various types, processes, applications, challenges, and futuristic aspects of wastewater treatment-related MFCs and thus sustainable resource recovery. With appropriate planning and further studies, we look forward to the industrialization of MFCs in the near future, with the idea that this will lead to greener fuels and a cleaner environment for all of mankind.
Vinay Virupaksha, Mary Harty, Kevin McDonnell
Energies • 0
<jats:p>Microgeneration of electricity using solar photovoltaic (PV) systems is a sustainable form of renewable energy, however uptake in Ireland remains very low. The aim of this study is to assess the potential of the community-based roof top solar PV microgeneration system to supply electricity to the grid, and to explore a crowd funding mechanism for community ownership of microgeneration projects. A modelled microgeneration project was developed: the electricity load profiles of 68 residential units were estimated; a community-based roof top solar PV system was designed; an electricity network model, based on a real network supplying a town and its surrounding areas, was created; and power flow analysis on the electrical network for system peak and minimum loads was carried out. The embodied energy, energy payback time, GHG payback time, carbon credits and financial cost relating to the proposed solar PV system were calculated. Different crowdfunding models were assessed. Results show the deployment of community solar PV system projects have significant potential to reduce the peak demand, smooth the load profile, assist in the voltage regulation and reduce electrical losses and deliver cost savings to distribution system operator and the consumer.</jats:p>
Yuda Zhang, Guangjie Yuan, Yan Xia et al.
Journal of Renewable and Sustainable Energy • 2025
With the growing issue of carbon dioxide emissions alongside energy consumption, hydrogen has garnered significant attention due to its net-zero emissions characteristics. From the industrial production of hydrogen to the exploration and development of hydrogen storage, as well as transportation and underground hydrogen storage (UHS), new integrated technologies and techniques have gradually emerged. However, unresolved technical challenges persist. Analysis of pilot test projects for UHS and hydrogen hybrid storage reveals that some experiences from salt cavern gas storage can be directly applied to hydrogen storage. However, potential technical difficulties and failure risks remain key constraints on the construction of salt cavern hydrogen storage facilities. Currently identified technical challenges include, but are not limited to, hydrogen spillage, microbial consumption, chemical reactions, and other mechanisms leading to underground hydrogen loss as well as integrity issues with wellbore materials (such as metals, cement, and elastomers). This paper summarizes the current technical status of hydrogen storage and emphasizes the need to enhance research and development of experimental equipment and numerical simulation software for underground hydrogen storage. Additionally, it highlights the importance of advancing exploration into porous formation hydrogen storage. This paper provides a theoretical foundation for the development of UHS.